
Uptane
Securing Over-the-Air Updates
Against Nation State Actors

Marina Moore Ira McDonald
New York University

uptane.github.io

Software supply chain
From developerЀs mind to your automobile

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improv
ing-the-nations-cybersecurity/

Source code Version
control

Build
automation

Deployment

CI/CD

Software supply chain
Uptane secures the Ͽlast mileЀ

Uptane

Source code Version
control

Build
automation

Deployment

CI/CD

Why update software in cars
● Millions of lines of code means bugs
● Regulations change -> firmware must change
● Maps change
● Add new features
● Close security holes
● Cars move across borders…

Updates need to be over-the-air
● Updating software/firmware has often meant recalls.
● Recalls are extremely expensive
● GM spent $4.1 billion on recalls in 2014
● GM's net income for 2014 was < $4 billion
● People do not like recalls.
● Updates must be over-the-air.

Updates are dangerous
● Update -> Control
● Nation-state actors pull off complex supply chain attacks

○ Must not have a single point of failure

Compromises happen
● Sunburst attack on Solarwinds distributed

by software update
● SourceForge mirror distributed malware.
● Attackers impersonate Microsoft Windows

Update to spread Flame malware.
● Attacks on software updaters have massive

impact
● E.g. South Korea faced 765 million dollars

in damages.
● NotPetya spread via software updates RubyGems

Update basics

Repository

Clientxyz.tgz, pls

xyz.tgz

Inadequate update security 1: TLS/SSL

Repository

Clientxyz.tgz, pls

xyz.tgz

Traditional solution 1:

Authenticate the repository (TLS, SSL, etc)

Certificate
Authority

Key XYZ
speaks for
domain
repo.net

XYZ

Inadequate update security 2: TLS/SSL

Repository

Clientxyz.tgz, pls

xyz.tgz

Transport Layer Security: Problem 1

Certificate
Authority

Key XYZ
speaks for
domain
repo.net

XYZ
Client has to trust all of these
Certificate Authorities

Inadequate update security 3: TLS/SSL

Repository

Clientxyz.tgz, pls

xyz.tgz

Transport Layer Security: Problem 2

Certificate
Authority

Key XYZ
speaks for
domain
repo.net

XYZ
Client has to trust this key.

… which HAS to exist ON the repository, to
sign communications continuously.

The Update Framework (TUF)

https://theupdateframework.io/

Repository

Clientxyz.tgz, pls

xyz.tgz

Role metadata (root, targets, timestamp, snapshot)

The Update Framework (TUF)

Uptane automotive SOTA goals
● Inspired by The Update Framework (TUF), a software update framework that is

designed for compromise resilience and security
● Compromise resilient software-over-the-air (SOTA) updates
● Ensures that images on the repository match images the vehicle installs
● Avoid arbitrary package installation even when server is compromised
● Minimize damage from a compromised signing key
● Built-in key revocation
● Prevent known attacks on software update systems

https://uptane.github.io/

Uptane design
● Designed as a collaboration between researchers and industry experts
● Participation from vehicle manufacturers and suppliers from around the world

https://uptane.github.io/papers/uptane-standard.1.2.0.html

Uptane design - the vehicle

Primary
Client

Secondary
Secondary

Secondary
Secondary

Secondary
Secondary

Secondary
Secondary

Secondary
Secondary

Secondary

Secondary

Wireless
Network

Uptane design - the ecosystem

Image
Repository

Director
Repository

Director

Full Verification
(FV) Secondary

Partial
Verification

(PV)
Secondary

Primary
ECU

Inventory
Database

Vehicle

FV
Secondary

PV
Secondary

metadata
& images

…
vehicle

manifests

…

Uptane community organization
● Open to everyone

○ Open source
○ Patent free
○ Standardized but not prescriptive

● Security of SOTA operations, not SOTA technology

Uptane standardization
● First Uptane UMTRI/NYU workshop in February 2016 - three years of DHS funding.
● First Uptane Standard 1.0.0 released in July 2019 as IEEE/ISTO 6100.1.0.0.
● Uptane project moved to Linux FoundationЀs Joint Development Fund in Fall 2019.
● First Uptane Standard 1.1.0 editorial update released in January 2021.
● Second Uptane Standard 1.2.0 editorial update released in July 2021.
● Companion Uptane Deployment Best Practices volumes w/ each standard release.

Uptane POUFs (Protocols, Operations, Usage, and Formats)

● A profile layer on top of the Uptane Standard
● Allows for interoperable Uptane implementations
● Describes an implementation

○ Choices made from the Uptane Standard and Deployment Considerations
○ Networking information, file storage and data definitions

Standard

POUF POUF POUF

POUF

Uptane integrations
● Many top suppliers / vendors are adopting Uptane for future

cars!
○ Millions of cars on roads worldwide

● Automotive Grade Linux
● OEM integrations

○ Easy to integrate!
○ Migrations from legacy update systems

Uptane security audits
Reviews of implementations and design:

● Cure53 audited ATS/Here's Uptane implementation
● NCC Group audited Uptane's reference implementation (pre-TUF fork)
● SWRI provided Uptane reference implementation / specification audit
● ...

Uptane is a living standard
Future areas include:

● Software supply chain security
● Guidance for aftermarket updates and right-to-repair
● Government emergency updates

Teaser for the next talk
● Options for partial verification secondaries
● Migrations from legacy systems
● Stakeholder feedback
● Open challenges

Get Involved With Uptane!
● Workshops
● Technology demonstration
● Compliance tests
● Standardization (IEEE / ISTO)
● Join our community! (email: jcappos@nyu.edu or go to the Uptane forum)

https://uptane.github.io/

26

mailto:jcappos@nyu.edu

Questions

Marina Moore Ira McDonald
marinamoore@nyu.edu blueroofmusic@gmail.com

Uptane.github.io
https://uptane.github.io/uptane-standard/uptane-standard.html

https://uptane.github.io/uptane-standard/uptane-standard.html

Backup slides

Arbitrary software attack
Repository

Is there an update?

Here is an update...

ECU-1
v.10 ECU-1

v.12

30

ECU-1
v.Evil

Freeze attack

Is there an update?

Same old, same old!

ECU-1
v10 ECU-1

v12

Repository

31

ECU-1
v10

Rollback attack

Is there an update?

Here is an update

ECU-1
v10

ECU-1
v1

ECU-1
v12

Repository

32

Slow retrieval attack

Is there an update?

Y … e … a … h … …

ECU-1
v10 ECU-1

v12

Repository

33

Mix and Match attacks

Is there an update?

Here is an update

ECU-1
v10

ECU-2
v10

Bundle-2

ECU-1
v12

ECU-2
v12

Repository

34

ECU-2
v12

ECU-1
v11

Partial Bundle attack

Is there an update?

Here is an update

ECU-1
v10

ECU-2
v10

Bundle-2

ECU-1
v12

ECU-2
v12

Repository

35

ECU-2
v12

ECU-1
v12

No, ty

Partial Freeze attack

Is there an update?

Here is an update

ECU-1
v10

ECU-2
v10

Bundle-2

ECU-1
v12

ECU-2
v12

Repository

36

ECU-2
v12

ECU-1
v12

Client has to trust this key

Inadequate Update Security 4: Just Sign!

Repository

Clientxyz.tgz, pls

xyz.tgz

Traditional Solution 2:
Sign your update package with a specific key.
Updater ships with corresponding public key.

XYZ

… used for every update to the repository.

… key ends up on repo or build farm.

If an attacker gains the use of this key, they
can install arbitrary code on any client.

Update Security

Repository

Clientxyz.tgz, pls

xyz.tgz

We need:
● To survive server compromise with the

minimum possible damage.
○ Avoid arbitrary package attacks

● Minimize damage of a single key being
exposed

● Be able to revoke keys, maintaining trust
● Guarantee freshness to avoid freeze attacks
● Prevent known attacks on software update

systems

Must not have single point of failure!

TUF goal “Compromise Resilience”

● TUF secures software update files
● TUF emerges from a serious threat model:

○ We do NOT assume that your servers are perfectly secure
○ Servers will be compromised
○ Keys will be stolen or used by attackers
○ TUF tries to minimize the impact of every compromise

The Update Framework (TUF): Goals

Responsibility Separation

timeliness

Root of trust

content consistency

40

The Update Framework (TUF)

TUF Roles Overview

Timestamps

(timeliness)

Root

(root of trust)

Snapshot

(consistency)

Targets

(integrity)
41

The Update Framework (TUF)

● Timeserver

● Multiple Repositories: Director and Image Repository

● Manifests

● Primary and Secondary clients

● Full and Partial verification

Uptane builds on The Update Framework (TUF)

The image repository

targets

A

snapshottimestamp

A*
.im

g

root

OEM-managed supplier-managed

Metadata

B

C
D

E

B*.img

C*.img

CA*.img

CB*.img

signs metadata for

signs root keys for

delegates images to
signs for images

● When possible, OEM
delegates updates for
ECUs to suppliers.

● Delegations are flexible,
and accommodate a
variety of arrangements.

A1.img

B3.img

CA5.img

CB2.img

43

Director repository
● Records vehicle version

manifests.
● Determines which ECUs

install which images.
● Produces different

metadata for different
vehicles.

● May encrypt images per
ECU.

● Has access to an inventory
database.

