Using a Dual-Layer Specification to Offer
Selective Interoperability for Uptane

Marina Moore!, Ira McDonald?, Andre Weimerskirch?, Sebastien Awwad?,
Lois Anne DeLong!, and Justin Cappos!

! New York University
{marinamoore,gsa215,1ad278, justincappos}@nyu.edu
2 High North Inc.
blueroofmusic@gmail.com
3 Lear Corporation
AWeimerskirch@lear.com

Abstract. This work introduces the concept of a dual-layer specification
structure for standards that separates interoperability functions, such as
backwards compatibility, localization, and deployment, from those es-
sential to reliability, security, and functionality. The latter group of fea-
tures, which constitute the actual standard, make up the baseline layer
for instructions, while all the elements required for interoperability are
specified in a second layer, known as a Protocols, Operations, Usage, and
Formats (POUF) document. We applied this technique in the develop-
ment of a standard for Uptane [37], a security framework for over-the-air
software updates used in many automobiles. This standard is a good can-
didate for a dual-layer specification because it requires communication
between entities, but does not require a specific format for this commu-
nication. By deferring wire protocols and other implementation details
to POUFs, the creators of the Uptane Standard were able to focus on the
basic procedures and operations needed to secure automotive updates.
We demonstrate the effectiveness of this format by specifying a POUF
for the Uptane Reference Implementation [36].

Keywords: standardization - interoperability - security - ota - updates
- ota updates .

1 Introduction

Standardization represents an important step in the growth of a product or
technology. It implies that a sufficient level of adoption has occurred to warrant
issuing sanctioned guidelines for the product’s safe implementation and use. In
turn, having accepted procedures for consistent implementation promotes trust
and may encourage adoption [38]. But, for all of its positive aspects, standardiza-
tion requires the individuals or organizations behind the project to make some
difficult choices. A standard, by definition [24] requires adherence to specified
steps, procedures, and actions. Yet, in real world applications, it is not always
possible to mandate how actions are to be implemented due to factors such

2 M. Moore et al.

as the physical nature of existing systems, proprietary management policies, or
differing international requirements [21].

The flip side of this problem is that without mandating specific procedures,
it may be impossible to guarantee interoperability of programs, either within
a system or across a given group of products. In addition, manufacturers may
find their ability to upgrade technologies limited, as new components may not
work on legacy systems with narrowly specified data formats. In the automotive
industry, where manufacturers often source parts from many suppliers, a lack
of interoperability can also mean either reduced selection or costly re-tooling to
accommodate differences in system specifications. When it comes to manufac-
turing vehicles, interoperability is not a trivial goal. Yet, the ability to affirm
vehicles were built using guidelines ensuring safe and secure implementations is
equally pressing, given the scrutiny auto manufacturing is under as the third
most regulated industry in the U.S. [22].

In the past, these conflicting needs have been addressed simply by writing
auto industry standards with different levels of detail. While some standards,
such as ISO 26262 and ISO/SAE DIS 34 [15, 16] specify framework requirements
without describing the implementation details, others such as IEEE 802.11 [6]
specify interoperability by defining communication protocols and other details
about how communication should function.

The limitations of these “either/or” solutions came to light in our efforts
to standardize the Uptane framework. Uptane, officially known as Joint De-
velopment Foundation Projects, LLC, Uptane Series, gives automotive original
equipment manufacturers (OEMs) and third-party suppliers the tools to secure
over-the-air (OTA) software updates on components in connected vehicles [20].
It released its first standard document under IEEE-ISTO in 2019 [35], and is
now hosted by the Linux Foundation. During this process, the standardization
team identified numerous examples in the existing guidelines where stipulating
how a process must be carried out would be problematic for wide adoption of
the standard. However, in practice each implementation needs to use specific
protocols in order to communicate with other implementations.

This paper introduces a new approach to standardization that eliminates
the need to choose security and interoperability over flexibility. It proposes a
dual-layer specification in which the first layer is a traditional standard that
defines a framework and the optional second layer specifies fine-grained imple-
mentation details needed for the tool to work in a given context. This second
layer can include the wire protocols, or how data is represented and encoded to
be transmitted between devices. Our proposed specification labels this second
layer a POUF, an acronym for Protocols, Operations, Usage, and Formats, or
the specific additional requirements needed to support interoperability.

As an example of how such a specification could work, consider the way the
order of day, month, and year can vary in how dates are written in different
countries. All these representations have the same goal: to specify the current
date. So the first layer of a dual-layer specification could stipulate when a pro-
cedure must be carried out without specifying the order of these numbers. The

Dual-Layer Specification 3

POUF layer would then describe how that information would be communicated
and displayed in the given implementation. In the United States, it would spec-
ify month, day, year, while a POUF used by most European countries would
specify day, month, year. Each POUF contains the information required by the
standard, but tailors the time expression to the location where it is used.

To see how our dual-layer specification model might work in a complete sys-
tem, we used it to write a POUF for an implementation of Uptane based on
the current Uptane Standard (V 1.0.0). This POUF layer includes a description
of the custom features of the implementation, including how cryptographic keys
are managed, the definitions of all transmitted data using Abstract Syntax No-
tation One with Distinguished Encoding Rules (ASN.1/DER), and details of the
networking infrastructure. Together, the documents allow an implementer to in-
teroperate with any implementation that shares both layers of the specification.

Based on our experience with Uptane, we attest that the dual-layer specifica-
tion offers numerous benefits beyond accommodating conflicting needs. By del-
egating all the fine-grained formatting details for particular systems to POUFs,
those preparing the Uptane Standard could focus just on essential design el-
ements that are broadly applicable. In addition, POUFs provide a common
language to discuss interoperability, even when implementers are working on
closed-source projects. With a POUF, adopters can provide the relevant format-
ting and networking information without releasing proprietary designs.

The main contributions of this work are as follows:

— We point out the limitations of traditional standards, particularly as they
apply to the automotive industry.

— We introduce the idea of a dual-layer specification as a means to provide
customization options for a standard that contains relatively minimal imple-
mentation details.

— We develop a sample dual-layer specification to demonstrate the applicability
of the approach for the Uptane framework.

2 Background

Functional safety is a primary concern in the automotive industry, and both
it and quality are measured against not only regulatory requirements but also
international standards [15]. As such, the contents of standards can be very
important to decision making by OEMs and suppliers. Below we share a brief
look at how standards are written, and then describe the Uptane framework,
which inspired the dual-layer specification. We also outline the key elements of
interoperability that would be included in a POUF layer.

2.1 Standards for the Automotive Industry

Standardization subjects a technology to a careful and critical examination be-
fore it is codified in a set of required steps. Once written, standards allow orga-
nizations within an industry to use the same basic procedures for quality, safety,

4 M. Moore et al.

and/or security [24], ensuring consistency across models and brands. While stan-
dards and regulations often have the same goals, the former are generally vol-
untarily implemented, while the latter are mandated by a governmental entity
[39]. In addition, standards are generally the result of consensus among a desig-
nated group of experts, following a process to get community feedback on one or
more drafts [30] [10] [11] [29]. This process provides assurance that a standard
codifies the current best practices for a product, and can demonstrate quality to
customers and regulators [38].

The wording of a standard must be explicit in order to distinguish between
elements that must be implemented to achieve compliance, those that are rec-
ommended (i.e., best practices) but not essential, and those that are completely
optional. Most standards will follow practices established within its industry
or field, including the use of clearly defined keywords. The Uptane Standard
uses keywords established in IETF BCP 14, a Best Current Practice document
published by the Internet Engineering Task Force. Under BCP 14, any design
element designated as MUST or SHALL is required for compliance, SHOULDs
are recommendations, and MAYs are optional [4]. The number of SHOULD and
MAY elements greatly affect how implementations of a standard interoperate
with others. The Uptane Standard has 94 instances of SHOULDs and MAYs, an
intentional word choice that allows for wide variance in implementations [34].

2.2 Elements of Interoperability

The SHOULDs and MAYs described above can include detailed specifications
and formats essential to interoperability. Elements such as what data is trans-
mitted, how it is sent, and what data binding formats are used to encode it need
to be compatible for implementations to successfully send data to each other.

A data binding format specifies how the data elements are to be encoded
(e.g., character set and repertoire restrictions for string data) for transmission
and the order in which they must appear (i.e., serialization and marshalling). A
number of data binding formats, including JavaScript Object Notation (JSON),
Extensible Markup Language (XML), Hypertext Markup Language (HTML),
Comma-Separated Values (CSV), and Concise Binary Object Representation
(CBOR) [31, 40,13, 26, 2], have been introduced for use in software, and in stan-
dards specifications. All of these formats are programming language neutral and
are designed to allow data to be sent reliably from one application or system
to another. Data elements are transformed into and retrieved from these data
binding formats in a consistent way.

2.3 Uptane Software Update Framework

The Uptane software update framework, which motivated our work on the dual-
layer specification, began development early in 2016. Supported by the US De-
partment of Homeland Security, it was formally introduced to the wider commu-
nity the following year [20]. Since then, Uptane has achieved very rapid adoption
in the automotive industry, in part because input was solicited at every stage

Dual-Layer Specification 5

of development from industry insiders, including representatives of OEMs that
manufacture 78% of all cars on US roads [33][18].

How Uptane Works

E [3 Full Verification
\ | Image Time Server Vehicle (FV)
Repository Secondary
FV
_ Secondary
Partial
s/ Director Ver}gc\?)lion
Repository Secondary
& 55 PV
roaee Secondary
Ditscion lnlljﬂgr: manifests SEmtmtotetiherl A7

Fig. 1. A graphic depiction of the components and operations used by Uptane [17].

Uptane uses multiple servers, known as repositories, to download images and
verify their authenticity by checking accompanying metadata before and after
downloading. This significantly reduces the chance that malware could be intro-
duced during the software update process. The Image Repository, shown at the
top of the left-hand side of Figure 1, is the keeper of every image currently de-
ployed, along with the metadata files that prove their authenticity. The Director
Repository, shown at the bottom left-hand side, controls what software is dis-
tributed to each Electronic Control Unit (ECU) in the vehicle. The Time Server
at the top of the diagram is one way for vehicles to access the current time in
a cryptographically secure way, since many ECUs do not have an internal clock
for verifying the freshness of messages, images, metadata, and certificates.

ECUs in a vehicle implementing Uptane are divided into two categories: pri-
mary and secondary. One ECU in each vehicle that has access to additional
storage space, computing power, and an internet connection is designated as
a Primary ECU and will be responsible for transmitting information from the
repositories to the other ECUs in the vehicle. The ECUs receiving this informa-
tion are called Secondary ECUs.

During the update process, the Primary ECU and the repositories communi-
cate certain data, including image metadata, evidence of the current time, and
the status of currently installed images. The process starts when the ECU sends
its vehicle version manifest, a compilation of all the signed information about
existing images, to the Director Repository. The Director uses this input to de-

6 M. Moore et al.

termine which images should be installed next. The metadata for these selected
images is then sent to the ECU from both the Director Repository and Image
Repository. The ECU will verify the image by checking cryptographic signatures
and comparing metadata from the Director Repository and Image Repository.
If the verification finds no issues, the images can be downloaded for the target
ECUs and the vehicle version manifest will be updated.

3 Developing and Managing a Dual-Layer Specification

A dual-layer specification is composed of two separate documents that together
provide a complete set of instructions for implementation. In order to separate
the basic operating principles from the fine-grained implementation details, we
developed a set of questions, the answers to which can determine how essential
a particular step or design detail within a specification might be.

This section first describes the design criteria that evolved from creating the
Uptane Standard. The three criteria listed in Section 3.1 not only guided design
choices, but also helped to determine points where greater flexibility might be
required in the existing specification. Section 3.2 then presents a workable way
to determine what aspects of the specification are critical. From these two sets
of statements and questions, a structure can be determined for a dual-layer
specification.

3.1 Ciriteria for a Flexible Design

When creating the Uptane Standard, it became clear that a traditional protocol
standard, which ensures compliance through adherence to explicit specifications,
would not provide either the flexibility or the simplicity needed for widespread
adoption of the framework within the automotive marketplace. Yet, we were
aware that issues with the limitations of traditional standards were not confined
to our immediate work. Therefore, in setting the basic design criteria for a new
approach to standardization, we looked to address issues that transcend the
automotive space. These criteria include:

1. The design must work within the context of existing systems. Po-
tential adopters have existing systems that cannot be entirely rewritten to
follow the wire protocol required by any new technology they adopt. There-
fore, the new standard format must allow for some flexibility in how the
requirements are applied to any given system.

2. The design should allow implementers to find common ground
without giving up trade secrets. While legacy systems have particu-
lar requirements, there are some unifying ideas across these systems. If the
same design would work on multiple systems, it would be beneficial for these
systems to be able to interoperate and share best practices. This requires
a format that allows such sharing without the need to reveal complete sys-
tem designs. This is especially true in industries like the automotive market
where proprietary practices dominate.

Dual-Layer Specification 7

3. The design should simplify specification and purchasing choices for
implementing entities. OEMs in the auto industry work with many sup-
pliers in the design of a vehicle, as do manufacturers of any complex product
or service. If multiple suppliers were able to create interoperable implemen-
tations for use on the same vehicle, criteria other than interoperability could
be considered in choosing suppliers.

These criteria suggest a new approach to developing standards that looks to
offer some options for how critical operations are conducted. To ensure these
options do not compromise the goals of the standard, we need to determine
what elements of an implementation are most vulnerable in terms of security,
efficiency, or functionality.

3.2 Determining Critical Operations

As discussed in Section 2, the standard layer of a dual-layer specification uses the
keywords MUST and SHALL to indicate required steps and procedures, while
MAY and SHOULD indicate elements that are optional or recommended. When
creating a dual-layer specification, authors must revisit the features required by
MUST or SHALL to determine whether they could instead be specified as MAYs
or SHOULDs and further described in the POUF layer. To make this distinction
between required and flexible features, standards authors can answer a series of
questions.

— What is the overall purpose of the specification? Is security the ultimate goal
of its implementation?

— What vulnerabilities are associated with the feature in question?

— Is there one format/approach, etc that is the only solution for protecting
against these vulnerabilities?

— Are there any known formats which are clearly less effective against these
vulnerabilities?

— What is the goal of the feature? Is there a different, valid way to achieve this
goal?

— Does the stipulated approach allow for backwards compatibility as systems
evolve?

— Is the stipulated approach the most efficient choice?

— Are there any specific risks to security or functionality in using alternative
approaches?

Such questions will provide a clear dividing line between what must be stipu-
lated and what could instead be labeled as a MAY or SHOULD in the standard.
Descriptions of which of these “good, but not essential” practices are used by an
implementation are included in the POUF and enable us to achieve the design
criteria set in Section 3.1.

8 M. Moore et al.

Section Purpose

Abstract Overview of the POUF

Protocols Networking information, data transmission, and data binding format

Operations Design decisions and added features

Usage Implementation management aspects, including key management, server
setup, and data storage strategies

Formats Data definitions and ordering

Fig. 2. The sections of a POUF

3.3 POUF Contents

A POUF can be thought of as an inventory of all the operations and procedures
used by an implementation, as well as specific details for applying the standard
on a network. As POUF's are shared with other organizations, these decisions
can propagate the establishment of best practices. The core data of a POUF
lies in the implementation details of the four categories that make up its name:
Protocols, Operations, Usages, and Formats as illustrated in Figure 2.

The Protocols section contains explicit networking information, including the
encoding and networking protocols used, the manner in which files are hosted on
repositories, and the types of requests, responses, and notifications the system
supports. In addition, it should contain a Message Handler Table listing all
supported messages sent or received during the update process.

The Operations section documents any features that are required by the
POUF in addition to the standard. The POUF may upgrade the requirement
level of features described as SHOULD or MAY in the standard or may exclude
these features. As a POUF must be based on the requirements of the standard,
any decision beyond those mandated in the standard—even ones referenced in
the Standard as options—must be explained. By documenting these decisions,
a potential adopter would better understand the system requirements it was
written to address. In addition, the POUF also preserves “institutional memory”
of why specific decisions about the implementation were made.

The Usage section describes how data is managed by the implementation,
including server setup procedures and key creation, distribution, revocation, and
rotation. It should also contain a Data Table delineating what keys and other
data each entity is able to access.

The Formats section is composed of all data definitions used during data
transmission, including all messages described in the Protocols section.

3.4 Using POUFs

A standard implementer following an existing POUF should do the following:

Dual-Layer Specification 9

— Use the abstract and header to determine whether the POUF is appropriate
for their circumstances.

— Read the Protocols section for the details of networking infrastructure to be
set up.

— Add all the relevant features described in the Standard and the Operations
section of the POUF, following guidance in the Usage section for all the data
that must be available.

— Set up servers and key management infrastructure as described in the Usage
section.

— Read the Formats section for the exact layout of data in each message to be
sent over the network.

Because POUFs are written to support the deployment of a specific version
of a standard, the POUF header must include the standard version number.
This version number must be updated whenever a new version of the standard
is released. When minor changes are made to the standard, they can just be
described in the abstract. However, if larger changes are made, particularly ones
that are not backwards compatible, a new POUF will need to be prepared.

An updated POUF always replaces its predecessor, though the old version
may continue to be available to implementers for a transitional period of time
(e.g., one year). This flexibility can allow implementers to continue to use the
older POUF version if they choose not to update immediately.

4 Implementing a Dual-layer Specification

To test the feasibility of using a dual-layer specification, we needed to apply it to
a particular product or process. As the Uptane Standard was written to allow for
flexible implementations, we decided to write a POUF for the Uptane Reference
Specification. This section provides an example of the decision-making that goes
into clarifying the boundaries between the two layers.

As the name suggests, the Uptane Reference Implementation is a basic imple-
mentation of the Uptane Standard. By design, it includes no major customiza-
tions to the Uptane Standard. It does, however, include several features that
were excluded from the Standard to make its adoption viable as an independent
update system. Primarily, these exclusions relate to the use of a Time Server
to provide a signed current time to vehicle ECUs and support for asymmetric
encryption between ECUs and repositories.

4.1 What goes in the Standard

To implement a dual-layer specification for Uptane, we first had to determine
what pieces of the specification belonged in the Standard, and what could be
specified in a POUF. As Uptane is a secure update system, determining whether
an aspect of the specification is security critical was our primary criteria. Here
are a few examples of elements that were included in the Standard, and others
that were left to the POUF layer.

10 M. Moore et al.

Central to the security promises of Uptane is it’s metadata validation pro-
cedure that verifies updates to ensure the file delivered is the most up-to-date
version of the file requested. We reviewed this process and determined that
some elements were security critical to all implementations, including many of
the fields in the metadata files, the process of metadata verification, and the
delegation of trust to separate roles. These concepts must be mandated in the
standard. On the other hand, how metadata is made available to vehicles, how
encryption keys should be stored and managed, and any additional metadata
fields, such as custom installation instructions, are more flexible. As such, these
features were not mandated in the Standard, but instead were left to be speci-
fied in individual POUFs. Though POUF elements are vital for the functioning
and ease-of-use of the system, the exact method of their implementation is not
critical for security.

Another element designated for the POUF was how the current time was
obtained. An accurate reading of the current time is essential in preventing
such threats as freeze or rollback attacks. If an attacker is trying to send old
updates to a vehicle, the vehicle must be able to detect that these updates are
no longer valid. However, there are many ways a vehicle might securely obtain
the time, and some vehicles may already have one built into their infrastructure.
Therefore we split this requirement between the Standard and the POUF. As
shown in Figure 3, the Standard requires that a vehicle have access to a secure
source of time, and describes what this time will be used for in the update
process. Meanwhile the POUF describes how the secure time will be received
and verified.

ECUs MUST have a secure source of time. An OEM/Uptane implementor MAY use any external source of time that is
demonstrably secure. The Uptane Deployment Considerations ({{DEPLOY}}) describe one way to implement an external time
server to cryptographically attest time, as well as the security properties required. When "loading time" is referenced in
procedures in this standard, it should be understood to mean loading into memory the current time (if the ECU has its own
secure clock), or the most recent attested time.

Fig. 3. The description of the Time Server in the Uptane Standard.

4.2 What goes in a POUF

First, a POUF includes metadata sections presenting a high-level overview of
its design goals. In this case, the metadata sections describe the purpose of
the Uptane Reference Implementation and tie the POUF to version 1.0.0 of
the Uptane Standard. This introductory information is followed by a detailed
account of the Protocols, Operations, Usage, and Formats used in the Uptane
Reference Implementation.

Protocols The Protocols section must include descriptions of all network traffic
sent by the implementation so that a reader could create a compatible APIL.

Dual-Layer Specification 11

For the Uptane Reference Implementation POUF, we first observed all network
traffic sent by the implementation, and recorded what data was sent, how it was
encoded, and how it was accessed by vehicles and servers. This information was
included in the POUF as a Protocol description, a Message Handler Table, and
a description of all hosted files.

The Protocol description presents a rationale for using the ASN.1/DER pro-
tocols to define data structures, and the XML remote procedure call protocol
(XML-RPC) to exchange data over the networks. In addition to its ease of imple-
mentation and readability, ASN.1 notation is familiar to many in the automotive
industry and thus is an appropriate choice for the Uptane community. Recogniz-
ing though that there are a few known vulnerabilities in this wire protocol, this
section also contains advice to implementers about using certified secure ASN.1
libraries. This is an example of the type of tradeoffs the dual-layer specification
can offer. It allows its target clientele to use familiar systems but makes clear
any potential security implications within this choice.

Request Sender Receiver Data Response Specification
Reference

submit_vehic | Primary Director VehicleVersio https://uptane.gith

le_manifest | ECU Repository | nManifest ub.io/uptane-stan

dard/uptane-stand
ard.html#director_
repository

register_ecu | Primary Director ecu_serial
_serial ECU Repository | Identifier,
ecu_public_k
ey PublicKey,
vin Identifier,
is_primary
BOOLEAN

get_signed_ti | Primary Timeserver | SequenceOfT | CurrentTime
me ECU okens

Fig. 4. The Message Handler Table from the Uptane Reference Implementation POUF.

The Message Handler table includes a description of all messages sent over the
network. The table lists all requests supported by the POUF, with columns for
the request, sender, receiver, included data, expected response, and a reference
link to the Uptane Standard. As shown in Figure 4, these fields each describe
part of the request:

— The request is the name used by XML-RPC to make the request.
— The sender is the Uptane entity that sends the request
— The receiver is the Uptane entity that receives the request

12 M. Moore et al.

— The data lists the names of data formats that are described in detail in the
Formats section.

— The response lists the data, if any, that the receiver will reply with.

— The link to the Uptane Standard is optionally used to link the reader to more
information about why the request is made.

Lastly, the Protocols section contains a description of the metadata files
used in the Uptane Reference Implementation that are hosted on a server to be
accessed by vehicles during the update process. This information includes a de-
scription of all the hosted files, how the location and filenames for all downloaded
files will be determined, and the client-server relationship between networked de-
vices.

Operations The Operations section contains any requirements of the POUF
in addition to those in the specification.

For the Uptane Reference Implementation, this section charts all the SHOULDs
and MAYs referenced in the Uptane Standard with instructions on how the Ref-
erence Implementation will handle these situations. These SHOULDs and MAY's
include all the recommended practices and features that are mentioned, but not
required in the Standard. This section also documents features like the Time
Server, which are used in the Reference Implementation but not described in
the Uptane Standard.

In order to make the section more readable, we grouped related items by
topic, such as metadata features, encryption algorithms, and delegations. Within
these groupings, we documented each customization and included a rationale
for each design decision. These rationales provide insight into the goals of an
implementation and can be used to preserve the decision making process. See
Figure 5 for an example of how the Time Server is documented in the POUF.

To access a reliable current time as needed for the In Vehicle Implementation Requirements, ECUs in this POUF use a
time server that produces a time attestation for each update cycle. The Primary ECU sends the time server nonce
tokens from each ECU, then the time server returns a time attestation that contains a signed the current time with all
the tokens, as described in the Deployment Considerations. The ASN.1 details of the time server are listed in
{Formats}. The time server is used by the reference implementation as a self contained way to ensure secure access to
the current time.

Fig. 5. The description of the Time Server from the Operations section of the Uptane
Reference Implementation POUF.

Usage The Usage section contains details relevant to the setup and manage-
ment of the Reference Implementation, including key management, server setup,
and data storage. As the implementation was written before the POUF, this
section documents actual experiences in implementing these processes. For ex-
ample, though the Uptane security model encourages the use of offline keys and

Dual-Layer Specification 13

separation of responsibilities where possible, in this implementation all keys are
stored online with a key threshold of one. Despite the overall safety goal of the
Standard, this implementation is not designed to be used in practice, and its
main goal is to demonstrate the efficacy of Uptane. So this section of Reference
Implementation POUF details this setup, including the rationale for the above
choices.

The Usage section also details the steps needed to set up the servers before
the Reference Implementation can be used. This includes the databases that
need to be created, the manner in which servers discover vehicles, and how key
initialization is performed. Unlike what is outlined in the Uptane Standard, this
section not only describes what servers are needed, but also stipulates their
architecture. For example the Uptane Standard mandates that an Image Repos-
itory must exist and that it must contain target files and metadata that can be
accessed by ECUs. In addition to these requirements, the POUF describes the
steps that an implementer must take to set up the Repository, as well as the
database schemas used to keep track of ECUs.

Lastly, the Usage section will contain a table documenting the location of
all the essential data required to build an implementation of the POUF. This
includes what data each entity stores, and what public or private keys can be
accessed to ensure that public key cryptography is properly initiated. The Data
Table from the Reference Implementation POUF is shown in Figure 6.

Location Data

ECU private key * Timeserver public key * Currently installed version * Secondary’s Vehicle
Version Manifests * The most recent root, timestamp, targets, and snapshot metadata (for a new
installation, just the known root metadata) from both the Image and Director repositories *

Primary ECU 3 . .

i Image repository public key for each metadata role and the associated threshold. These values
are available in the current metadata files. * Director repository public key for each metadata
role and the associated thresholds. These values are available in the current metadata files.

Full A

ficati ECU private key * Timeserver public key * Currently installed version * The most recent root,
verification
secondar timestamp, targets, and snapshot metadata (for a new installation, just the known root
ECU Y metadata) from both the image and director repositories
Partial
verification ECU private key * Timeserver public key * Currently installed version * Director's targets
secondary metadata public key
ECU
Director ECU public keys * Metadata about images * Inventory database * Online metadata private
Repository director metadata keys * Metadata signed by offline director metadata keys
Image ECU public keys * Metadata about images * Images * Online metadata private image metadata
Repository keys * Metadata signed by offline image metadata keys
Timeserver Timeserver private key * Current time

Fig. 6. The Data Table from the Uptane Reference Implementation POUF

14 M. Moore et al.

Formats The Formats section must include the encoding and format of all data
transmitted by the implementation. As ASN.1 encoding is used by the Uptane
Reference Implementation, its POUF contains the ASN.1 definitions of all data
elements. For brevity, this section starts with common definitions that are used
in multiple messages, and then describes how these data elements are used in
the messages sent between Uptane entities.

5 Discussion

Before proposing adoption of the dual-layer specification design for other stan-
dards, we needed to resolve a few additional issues, such as how to store and
access POUFs, and identifying possible places where the flexibility offered by
such a specification might not be desirable. This section addresses these issues,
and also evaluates our success in overcoming the specific limitations of conven-
tional standards that had motivated our new approach for Uptane.

5.1 Storing and Accessing POUFs

A primary issue in POUF management is how to make these instructions ac-
cessible to future implementers. This management choice will depend in part
on how involved the implementers wish to be in the testing and validation of
their own product. While listing POUFs does not automatically imply the host
site is responsible for its contents, there could still be concerns about potential
liability. Some of the possible storage options are:

— A central team could post links to externally stored POUF's allowing for easy
storage without any actual or perceived endorsement.

— Each implementer could choose to store their own POUF without any added
validation (although that lack of self-validation would diminish the market-
place value of the POUF).

— A central team could validate POUFs using a given standard test suite.

— Standards authors could decide to trust implementers to write valid POUFs,
and then accumulate crowd-sourced information about the quality of the
POUFs. (This would not be an acceptable alternative in a regulated industry
with functional safety and/or security legal requirements).

— POUFs could be managed by an OEM or other third party that validates
the POUF and distributes it to suppliers.

All of these POUF storage methods have benefits and drawbacks that should
be balanced for a particular standard. If a standard has an active group of
maintainers, then externally validating all POUFs can provide clear choices for
adopters. Storing the POUFs externally or simply trusting that they are valid
could require less work for the standards development team, but any tampering
with these POUFs could reduce the credibility of the standard itself. If POUF
management is left to an OEM, it gives that entity the ability to decide when
information in the POUF should be shared, for example in an OEM RFC. How-
ever, this also makes the OEM responsible for ensuring compliance.

Dual-Layer Specification 15

5.2 Tradeoffs

Despite the benefits, careful consideration should be given before creating a
dual-layer specification. The team writing the standard should be aware of any
possible contradiction between a proposed POUF and the corresponding stan-
dard, as it could cause a security vulnerability or corrupt a required feature. The
degree of flexibility in a standard may need to be dialed back for technologies in
which optional approaches could pose a particular safety or security risk.

Another drawback to dual-layer specifications could be the need to check
against two references rather than one while creating an implementation. This
added complexity could increase the chance that a required feature might be
left out of one or both documents. As such, a dual-layer specification may take
a bit longer to create in order to allow time for cross-checks between the two
documents. This could be minimized by combining the two documents into a
unified design description before starting work on an implementation.

In addition, dual-layer specifications are not suited for every standard de-
velopment effort. In some cases, interoperability is such a key feature in the
operation of a given process that a dual-layer specification should not be used.
For example, standards for networking protocols and data binding formats re-
quire most of the information that would typically go into a POUF, including
the data formats and any metadata transmitted. Interoperability between com-
municating devices is a key feature of all networking protocols.

The takeaway lesson is that at the start of any standardization effort, the
creators should conduct the step recommended in Section 3.2 and ask themselves
a number of questions about the function of the technology being standardized,
the target audience of users and implementers, and the risks and benefits of
flexibility in each procedural step. The answers will determine how flexible the
resulting standard should be.

5.3 Does the Dual-Layer Approach Overcome the Limitations of
Conventional Standards?

In Section 3.1 we set three flexibility criteria for our dual-layer specification that
would make it applicable within and beyond the automotive space. Here, we
discuss how our design addresses each of these criteria in the context of the
Uptane Standard.

— The design must work within the context of existing systems. A
dual-layer specification separates the design of a framework from the context
of an implementation. The design is laid out in the standard while informa-
tion about how this design fits into the context of a larger system goes in
a POUF. The dual-layer specification for the Uptane framework allows the
security goals of Uptane to be specified in the standard while the leaving
enough flexibility for the design to use data formats, networking protocols,
and other implementation details that work with any existing systems. This
separation allowed Uptane to integrate with existing OEM backends.

16 M. Moore et al.

— The design should allow implementers to find common ground
without giving up trade secrets. Dual-layer specifications allow imple-
menters to share the same standard for a baseline of security, reliability, or
functionality. The POUF layer provides a mechanism to allow for interoper-
ability and could be used to share these relevant details without divulging
the code of an implementation. For example, the Protocols and Formats sec-
tions of a POUF allow implementers to share how data can be transmitted
to an implementation. In addition, the POUF layer is optional. An organi-
zation can have a valid implementation of the standard without divulging
any information that could be considered proprietary. For Uptane, this sep-
aration between standard and POUF allowed suppliers and OEMs to build
interoperable implementations without divulging trade secrets.

— The design should simplify specification and purchasing choices
for implementing entities. The POUF layer allows for interoperable and
interchangeable implementations of a standard. OEMs interested in using
Uptane are able to specify the POUF they would like implemented and
any supplier working with the OEM could implement that POUF to create
interoperable implementations. In this way, OEMs can consider factors other
than interoperability, such as cost or efficiency when choosing a supplier, and
suppliers can make an implementation that will interoperate with an OEM’s
system by default.

6 Related Work

The dual-layer specification presented in this paper is an attempt to inject flexi-
bility into documents that, by nature, require exact specifications. Before propos-
ing such a fundamental change, we examined other works that present the cur-
rent approach to the standardization process, as well as previous attempts to
add flexibility, and other new approaches to preparing these documents.

6.1 The Standardization Process

A quick survey of standards organizations—including the Internet Engineering
Task Force (IETF)[30], the Institute of Electrical and Electronics Engineers[10],
the International Standards Organization[11], and the Society of Automotive
Engineers[29]—shows most follow a common process for preparing these docu-
ments. A need for formal guidelines in the design, development, or implementa-
tion of a product or technology is identified. A group of relevant stakeholders is
then assembled to write, review, and revise a draft standard which is released
to a broader audience. The audience provides feedback which guides additional
revision before an edited version is released. Each standards organization designs
their process to balance the need for completeness of a standard and timeliness
of its release.

When new technologies are standardized, one of the key considerations is
often how to make these technologies interoperable with existing devices and

Dual-Layer Specification 17

standards. In an analysis of standardization efforts, Cargill includes “The stan-
dard is finished and implementations are incompatible” as one of the six reasons
that standards often fail [5]. It follows that addressing interoperability during
the design of a standard will help the standard to succeed. LaMaire et al describe
how new wireless technologies require changes to existing standards to ensure
future interoperability [19]. The standards described, including IEEE 802.11 [6]
address interoperability concerns by mandating all networking operations. Any
changes to the wire protocol would then conflict with the existing standard
and so result in a new release of the standard with these changes incorporated
[7][8]. Alternately, interoperability can be addressed after a standard is written
through interoperability testing [28]. Such a test is often used in conjunction
with standards that are intended to specify interoperability.

Dual layer specifications address interoperability during the standardization
process while still allowing for flexible implementations. The POUF describes
compatibility so that implementations can be interoperable when needed, but
not at the cost of an overly rigid standard.

6.2 Flexibility in Standards

Braa et. al. discuss the need for flexibility in information infrastructure in the
creation of technology standards for health data in developing countries [3]. They
note that flexibility is important in technology because of the likelihood of future
improvement, user requirements that change over time, and integration with
other technologies. To address these issues, the authors propose using standards
that are vertically and horizontally modular so that each standard only describes
a small portion of the system and can be integrated with other standards. A
dual-layer specification can increase flexibility by allowing each standard to have
multiple POUFs for integration with different technologies. These POUFs can
be adjusted over time without affecting the underlying standard.

Beck introduces a formal model for layered systems built around the hour-
glass model [1]. This model, which is used in practice in internet protocols and
operating systems, allows multiple applications to interoperate through a com-
mon layer specification. The author discusses the benefit of making the con-
necting layer as small as possible to allow for a wider variety of applications,
and introduces the Deployment Scalability Tradeoff to formalize this relation-
ship between interface size and scalability. A dual-layer specification is similar
to the top half of the hourglass model in that multiple POUF's interact with
the same standard, while greater flexibility in the standard allows for a wider
variety of valid POUFs. However, interoperability in dual-layer specifications
is done through multiple POUFs instead of a single interface because the goal
of a dual-layer specification is to have a single standard operate with multiple
systems, while the goal of the hourglass model is to create systems that can
interoperate through a shared interface.

Some standards allow implementers to choose from a fixed number of options,
based on their individual priorities. For example, TPM 2.0 [32] allows for five
possible security levels and an implementer must choose one as described in the

18 M. Moore et al.

standard. Adopters can write profiles to describe the subset of TPM that they
are using. For example, the Windows TPM 2.0 profile lists the security level
chosen and all features that must be included for interoperability [23]. Unlike
POUFs, these profiles do not describe anything outside the scope of the standard.
They simply list which options from the standard are implemented. This process
allows for some limited flexibility to manage security and functionality tradeoffs.

6.3 New Approaches to Standardization

To address limitations in existing standardization procedures, some groups are
working on new ways to create standards. IEEE-ISTO was created to standardize
software with a faster development process that uses industry experts organized
into alliances or consortia [27]. The Internet Research Task Force (IRTF) Crypto
Forum Research Group combines work on cryptography standards with the cre-
ation of informational materials to offer guidance on the use of cryptographic
mechanisms [9]. The IEEE P2413 working group [14] is working to create general
security, privacy, and safety guidelines for IoT devices. The group is consider-
ing solutions that address incompatible implementations, including creating a
standard that allows for flexibility in implementations to allow devices with var-
ious primary functions to interoperate in an IoT system. TLS 1.3 was developed
using a new process of proactive development designed to find security flaws be-
fore the release of a standard [25]. A study of the Kaleidoscope conference found
that transparency and academic involvement can improve standards quality [12].
All of these strategies improve the standardization process, but none of them
allow the combination of interoperability and flexibility offered by a dual-layer
specification.

7 Future Work

A dual-layer specification can be applied to any standard development effort
that requires both rigid security or functionality requirements and a need for
broad stakeholder buy-in. This includes standards for intra-vehicle communica-
tion, safety requirements, and security practices. In all of these cases the stan-
dard layer provides a description of the security and functionality requirements
while the POUF layer provides enough flexibility to get broad support for these
requirements. Beyond the automotive space, smart homes, IoT devices, and med-
ical devices could benefit from standards that provide guarantees across a variety
of implementations.

Dual-layer specifications and the implementations that use them should be
subject to rigorous testing to ensure adherence to both layers of the specification.
If two implementations use the same POUF, there could be interoperability test-
ing between these implementations. In addition, every POUF should be tested
to ensure it does not contradict the standard. These and other testing efforts
would help ensure that all implementations of a dual-layer specification achieve
the functionality and interoperability requirements of the system.

Dual-Layer Specification 19
8 Conclusion

The dual-layer specification model introduced in this paper gives standards de-
signers a method to minimize the details that must be explicit in a standard,
potentially with no loss of security properties. The compromise that resolves the
conflict between requiring interoperability and working with legacy systems is
addressed by the POUF, a second layer that complements the corresponding
standard and allows groups of implementers to create interoperable implemen-
tations. By using POUFs to address interoperability, the standard can focus on
functionality or security goals and specify these in a way that can be adopted by
legacy systems. We verified the feasibility of the dual-layer specification model
by applying a POUF to the Reference Implementation of the Uptane Standard
framework. This application of the dual-layer specification model demonstrates
its effectiveness in separating critical functionality from interoperability con-
cerns. This new model of standardization has the potential to revolutionize the
standards process by allowing for more flexibility while ensuring key security
and functionality features are consistent across an industry.

References

1. Beck, M.: On the hourglass model. Communications of the ACM 62(7), 48-57 (july
2019)

2. Bormann, C., Hoffman, P.: Concise binary object representation (cbor). Standard
RFC 7049, Internet Engineering Task Force (2013)

3. Braa, J., Haneth, O., Heywood, A., Mohammed, W.: Flexible standards. In: IEEE
STIT (2005)

4. Bradner, S.: Key words for use in rfcs to indicate requirement levels. Standard,
Network Working Group (1997)

5. Cargill, C.F.: Why standardization efforts fail. The Journal of Electronic Publish-
ing 14 (2011)

6. C/LM - LAN/MAN Standards Committee: Ieee standard for wireless lan
medium access control (mac) and physical layer (phy) specifications. Stan-
dard IEEE 802.11-1997, Institute of Electrical and Electronics Engineers (1997),
https://standards.ieee.org/standard /802_11-1997.html

7. C/LM - LAN/MAN Standards Committee: Ieee standard for information
technology—telecommunications and information exchange between systems lo-
cal and metropolitan area networks—specific requirements part 11: Wireless lan
medium access control (mac) and physical layer (phy) specifications. Stan-
dard IEEE 802.11-2012, Institute of Electrical and Electronics Engineers (2012),
https://standards.ieee.org/standard /802_-11-2012.html

8. C/LM - LAN/MAN Standards Committee: Ieee standard for information
technology—telecommunications and information exchange between systems lo-
cal and metropolitan area networks—specific requirements - part 11: Wireless
lan medium access control (mac) and physical layer (phy) specifications. Stan-
dard IEEE 802.11-2016, Institute of Electrical and Electronics Engineers (2016),
https://standards.ieee.org/standard /802_-11-2016.html

9. Crypto forum research group. https://irtf.org/cfrg, last accessed 8 June 2020

20

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

M. Moore et al.

Develop standards. https://standards.ieee.org/develop/develop-
standards/process.html, last accessed 5 November 2019

Developing standards. https://www.iso.org/developing-standards.html, last ac-
cessed 5 November 2019

Griffin, P.H.: Standardization transparency. Chen L., McGrew D., Mitchell C. (eds)
Security Standardisation Research 8893, 57—68 (2014)

Html 4.0 specification. Standard, W3C Recommendation (1997)

IEEE Standards Association: Standard for an Architectural Framework for the
Internet of Things (IoT) (2019)

ISO/TC 22/SC 32 Electrical and electronic components and general system as-
pects: Road vehicles functional safety. Standard ISO 26262, International Stan-
dards Organization (2018), https://www.iso.org/standard/68383.html

ISO/TC 22/SC 32 Electrical and electronic components and general system as-
pects: Road vehicles cybersecurity engineering. Standard ISO 21434, International
Standards Organization (2020), https://www.iso.org/standard/70918.html
Kuppusamy, T.: Securing over-the-air updates against nation state actor. Uptane
2018 SAE meeting (2018)

Kuppusamy, T., DeLong, L., Cappos, J.: Uptane security and customizability of
software updates for vehicles. IEEE Vehicular Technology Magazine pp. 66—73
(2018)

LaMaire, R.., Krishna, A., Bhagwat, P., Panian, J.: Wireless lans and mobile
networking: Standards and future directions. IEEE Communications Magazine pp.
86-94 (1996)

Mathews, L.: Uptane will protect your connected car from hackers. Forbes (2017)
McDonald, C.: How the development of standards will affect the internet of things.
Computer Weekly (2014)

McLaughlin, P., Sherouse, O.: The mclaughlin-sherouse list: The 10 most-regulated
industries of 2014. Mercatus Center (2016)

Microsoft: TPM V2.0 Command and Signal Profile (October 2018)

Nist glossary. https://csre.nist.gov/glossary/term/Standard, last accessed 29 June
2019

Paterson, K.G., van der Merwe, T.: Reactive and proactive standardisation of tls.
Chen L., McGrew D., Mitchell C. (eds) Security Standardisation Research 10074,
160-186 (2016)

Shafranovich, Y.: Common format and mime type for comma-separated values
(csv) files. Standard RFC 4180, Internet Engineering Task Force (2005)

Shaw, N.E.: Emerging technologies and the new face of standards. IEEE Industry
Standards and Technology Organization (2017)

Shaw, N.E.: Certification programs: Different models that work. IEEE Industry
Standards and Technology Organization (2018)

Standards development process. https://www.sae.org/standardsdev/devprocess.htm,
last accessed 5 November 2019

Standards process. https://www.ietf.org/standards/process/, last accessed 5
November 2019

T Bray, E.: The javascript object notation (json) data interchange for-
mat. Standard RFC 8259, Internet Engineering Task Force (2017),
https://tools.ietf.org/html/rfc8259

Trusted Computing Group: Trusted Platform Module Library Family 2.0 Level 00
Revision 1.59 (March 2020)

Uptane adoptions. https://uptane.github.io/adoptions.html, last accessed 29 June
2019

34.

35.

36.

37.

38.

39.

40.

Dual-Layer Specification 21

Uptane Alliance: Teee-isto 6100.1.0.0 uptane standard for design and implementa-
tion. Standard IEEE-ISTO 6100, IEEE Industry Standards and Technology Orga-
nization (2019), https://www.iso.org/standard/43464.html

Uptane alliance homepage. https://ieee-isto.org/member_programs/uptane-
alliance, last accessed 29 June 2019

Uptane reference implemenation. https://github.com/uptane/uptane, last ac-
cessed 29 June 2019

Uptane website. https://uptane.github.io/overview.html, last accessed 29 June
2019

Viardot, E.: Trust and standardization in the adoption of innovation. IEEE Com-
munications Standards Magazine pp. 31-35 (2017)

What is the difference between a code, standard, regulation and specification in
the electrical industry? https://blog.nvent.com/erico/erico-what-is-the-difference-
between-a-code-standard-regulation-and-specification-in-the-electrical-industry/,
last accessed 21 February 2020

Extensible markup language (xml) 1.0 (fifth edition). Standard, W3C Recommen-
dation (2008), https://www.w3.org/TR/xml/

